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Time mapping in power series expansions for the time evolution operator
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Two formally equivalent methods for systematically evaluating either the propagator or the average of
dynamical variables are developed by expanding these quantities in a power series in a given fjhction
The expansion coefficients are analytically determined by recursion relations. The methods are an extension of
our power series expansion formalisiRhys. Rev. Lett.75, 4342 (1995] to a general Fokker-Planck-
Schralinger process. The role of the time transformation in accelerating the series convergence is emphasized
and the generalization to an arbitrary conformal time mappifty is presented. An appropriate truncation
scheme is suggested to eliminate the openness of the series representations. We also develop a regular proce-
dure to minimize the truncation error. The formalism thus constructed provides a basis for an efficient error
controlled treatment of simple or complex systems with any number of degrees of freedom. The application to
a well-known problem of the decay of an unstable state driven by exponentially correlated Gaussian noise
shows that an accurate description for arbitrarily largeattained with a few terms of the present expansions
and their utility is rather insensitive with respect to the noise strength. This is in contrast to the various
available approximate solutions of the problem that are all asymptotic in the noise strength.
[S1063-651%97)12102-X

PACS numbgs): 02.50.Ey, 03.65.Ge, 03.65.Db, 05.3@

I. INTRODUCTION pansion[21-23. Numerical schemes can, in principle, pro-
vide very accurate results with intensive computational
There is a wide class of phenomena in physics, ChemistrﬁffortS. Their utility, however, is strongly limited by the stor-
and biology whose dynamics and statistical mechanics ca@de requirements and execution time that grow exponentially
properly be described in terms of Fokker-Planck, Bloch, andVith the dimensionality of the problem under study. Various
Schradinger equation§l,2]. These equations, which will be approximate methods cou!d also be very efficient in analyti-
subsumed under the name Fokker-Planck equation, typica!}lja"y treating Eq.(1), provided that their assumptions are

have the formia summation over repeated indices is alway atisfied. So_me of these methods rely on the specific nature
implied, if not stated otherwige of the equation and almost all of them involve approxima-

tions that limit their applicability to certain favorable re-

1 gimes of parameter space and/or initial conditions. The

—ﬁﬁDij(X)—ﬁiGi(X) reader is referred to various quasiharmonic and quasiadia-

2 batic approximation$12,24—286, as well as to perturbation
techniques based on the generalized Trotter formia-

P(x,t) (1) 32], Dyson series expansidi33,34], semiclassical approxi-

mation[35,36], and Taylor series representationt if87—40Q

. o N (see also a collection of references in R&9]). The latter

and are to be solved with some initial conditiBgx,0). Here  method is particularly efficient from the computational point

L is the Fokker-Planck operator defined by E€l), of view. Being formally exact, a Taylor series representation

X'= (X1, ... Xn), and the numbec defines the problem un- of the time evolution operator, in contrast to those obtained

der study: for complex=1 Eq. (1) is a Schrdinger equation in terms of path-integral methods and eigenmode expansion,

and forc=1 it is a Fokker-Planck or Bloch-type equation. provides a very natural basis for thgstematic evaluatioof

Sincec can always be absorbed intg we setc=1 from the fundamental solutiofpropagator of Eq. (1), satisfying

here on. General solutions of Ed) can be derived in many the initial condition

different ways, e.g., by using path-integral methods or eigen- _ v

mode expansioiil,2]; but the solutions thus obtained are P(xt=0ly)=8(x-y) )

formal. There are very few models that can be solved exactljn a straightforward, analyticalay.

with presently known mathematical technigues. This situa- In the following, by a Taylor series representation of the

tion gives rise to many stimulating opportunities for the de-propagator we will mean any representation of the form

velopment of approximate procedures to analyze such equa-

tions numerically. Widely used procedures rest on basis set Pxtly)=K(xty)Z(S),

expansion[2-7], path integrals[3,8—14, iterative time-

dependent propagation scheni@sl5-2Q, and moment ex-

dP(x,t)=cLP(x,t)=c

—V(X)

S=t"Pr(x.y), ()

whereK(x,tly) andZ(S) are given functions. The existing
approaches are not generally different from each other, but
*Permanent address: Institute for High Temperatures, 13/1®ather their choices for these functiof®7—40Q. Depending
Izhorskaya Street, 127412, Moscow, Russia. on the definition oK andZz, different recursion relations for
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the expansion coefficient8,, are derived by inserting Eq. to methodology. Their utility is generally restricted to equa-
(3) into the original equation and equating like powerg.in tions with constant and invertible diffusion matrix and, what
The recursion relations are simple enough to permit the ands also important, to this particular dependencef t, Eq.

lytic evaluation of the expansion coefficients for any number(4). Moreover, the convergence rate is found to be very sen-
of degrees of freedom in many situations of practical interestsitive to the choice of the free parameterinvolved in the
Analogous results are also obtainable by other meansxpansion, but we have failed to develop a rather rigorous
[35,41,42. But the reader can readily verify that the deriva- and general method for its determination.

tion outlined above is considerably simpler and shows more In this paper, two essentially analytic techniques for gen-
systematically how terms of arbitrary order can be detererating series representations, one for the propagator and an-
mined. One also notes that many other available series repther one for the average of a dynamical variable associated
resentations for the propagator though systematic, are purelyith P(x,t), are presented. These are an extension of our
formal and therefore no more simple to implement than thepower series expansion formalisfd3—-45 to a general
original Fokker-Planck equatiord3,34,34. Fokker-Planck process, E€l), as well as to an arbitrary

Although the Taylor series expansion method can be usedependence of t. Our aim is to provide a systematic, error
to solve general Fokker-Planck equatid$], its conver-  controlled strategy for grouping the terms in the Taylor se-
gence has not been theoretically proven. However, the cakies (3) so that the terms of the rearranged series decrease
culations, performed on model systems using E).with much faster. Clearly, this strategy permits the efficient ex-
different functionsK and Z, show that the utility of the trapolation of the behavior of the series to its eventual sum
method is in general restricted to short tinj8%,38,43—-4%  for as large as a time interval as possible. A slowly converg-
The method is actually accurate in this limit if one truncatesing power series such as in E@) can always be cast into
the series at high enough order. With increaditige number  the form
of terms necessary for obtaining accurate results grows very
rapidly, and beyond somg,,, that is usually noticeably S=7"Wr(X,y), 5
smaller than unity, the expansion fails to converge with a
finite number of terms involved in the series. Even thoughwhere 7 is an arbitrary conformal time transformatian(t)
any reasonable number of the expansion coefficiptare  satisfying the conditiorr(0)=0. Certainly, such a represen-
obtainable analytically, e.g., by using a computer algebradation of the propagator is actually equivalent to its original
manipulator, it is practically impossible with this technique Taylor series representation. The only reward for making the
to approximately evaluate intermediate-time dynamics, tgroblem more complicated is that we can thus apply all the
say nothing of dynamics in the whole time dom§8v,45.  machinery for sum acceleration to the new series(&g.In
The reason is that a finite-order truncation of the sg@gat  particular, experience shows that the Taylor serie€3jnis
m=M, ast goes to infinity, also tends to plus or minus usually an alternating one in a wide rangexaindy. There-
infinity depending on the sign d®,,(x,y). This is the case fore, one may expect that a generalized Euler transformation
regardless of the specific form of the Fokker-Planck operatoef the form
and initial conditions.

In a recent series of papd#3—45, we have presented an t
alternative power series expansion formalism that is free of T iret ®
the above drawback. Its key points are representing the full
propagator as a product of the harmonic-oscillator propagawhich is known to be “the old reliable” of sum acceleration
tor with the configuration function and expanding the expo-algorithms for alternating series, would be especially useful
nent of the configuration function in a power series in ain such a case. The advantage of this transformation is that
given functionr(t) in place oft. The explicit form of the  when applied to almost any alternating series that is converg-
function 7(t) introduced in Refs[43-49 reads ing or diverging algebraically, it yields a new series that
converges exponentially fast.

The general developments are given in Secs. Il and Il for
the propagator and for the average of dynamical variables,
respectively. Different schemes for truncating the series rep-
This particular time dependence has been chosen as it fesentations are discussed in Sec. IV. Numerical calculations
associated with the width of the reference harmonicfor test systems are presented in Sec. V. Sections VI ends the
oscillator propagator and so it is hoped to give a reasonableaper with an outlook.
time scale in a general case. From a computational point of
view, the most appealing feature of this approach is perhapg pOwWER SERIES EXPANSION FOR THE PROPAGATOR
that the fictitious timer maps the singular point=o to ) o
finite 7=1/w. In addition, the frequencw, which is a free ~_ Following the underlying idea of the present paper, out-
parameter, can be chosen such that the convergence of thaed in the Introduction, we first replace in EQ.) the time
corresponding series in is as fast as possible. Numerical derivatived; by that overr
applications to various physical models show this formalism
to be a dramatic improvement over the existing Taylor series P :d_Tﬁ %)
expansions of the propagator, E®), in that it converges todtT ™
much better over a much broader range ¢#3—45. How-
ever, the results thus obtained are not exhaustive with respeathere a series expansion infor d7/dt is assumed to exist,

1
r=—(1-e ). (4)
w
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T To the best of our knowledge, there are no general solutions
T Ent", m=1 (8)  of this equation for curved manifolds other than a formal
expansion in terms ofy;=x;—Yy; derived by representing

In this expansion we have set, without loss of generalityD" in @ “product” form
&=1, in order to provide the equalityr=t for Dil = gikgik. (15

£=0 (i=1). The inverse of the diffusion matrix,
ue to the symmetry and reality 6"l the real and symmet-

D'I=(Djj) " *, is also assumed to exist, thus permitting us to
interpret it as the metric of a Riemannian manifold spannecﬁC matrix g/l always exists. It is generally defined as

by the variables;. Then, Eq.(1) can exactly be solved by

ez(tr;anding the exponent of the propagator in powers of gij:(Pi(k))\&lz(P](k), (16)

r

_ n _1p m—1 with {e®} and A(i,k=1,...n) being, respectively, the

PO.tly) =[(277)"D(x)]"**exl 7" *Win(x.y)], mz(% eigenvectors and eigenvalues @'". If one expands
Wo(X,y) in powers of 5;, the formal solution to Eq(14)

with D(x) being the determinarid(x)=defD;;(x)]. It is a reads[39]

simple matter to check that the ansé@greduces the original

. . : . 1
proble_m to the fqllowmg hierarchy of fwst-order couple_d.dlf- Wox,y)=— = |(p-V)* g 1p/k! 2, k=1. (17)
ferential equations for the expansion coefficients 2

{Win(x.y)}:

In the serieg17) V acts ong™ ! only, and the derivatives of
Dij (3 Wo) (9, W) — (M= 1)Wy, =V, =0. (10) g ! are evaluated at=y. The first few terms of this expan-
sion can be determined explicitly
In Eq. (10) the summation rule fom is not implied, while
the inhomogeneity/,, is determined in terms of lower-order

1 . 1
=— _DUypn —— [ DL DN
terms W_,=&_,=0), Wo(X,Y) 2D i mMj Z{D F<~}|Jk77|77]77k

1 ) 1 2 ..
VmIEDii(aiWO)(ajWO)5m,0+(aihi+F=jhi+v)5m,2 +ﬂ{DpSFP'F'S‘_2a”D Fijr 2170, 7
N h+1D i)(ﬂN ng +... (18
2Tk AL g smd where the curly brackets denote complete symmetrization,
m-1 ie.,
2 (= 1énW, 1 |
'~ ) {D"T" }ije=3 (D" T+ DT+ D'*TY). (19
1 i
—ZD..| g2 . .
ZD'J{a'JWm‘lJF kgl (Wi (9 Win-i) |, (1D) The rest of the equations in the hieraroty) are linear
with respect toN,, and readily solved in closed form to yield
Wherel“Fj stands for a Christoffel symbol [39]
L fj fi ij Win(x y)=£[—W (x y)](l‘m)’zfxda[&-w (zy)]
Fijzszr(O”iDJ'i‘(?jD _(9,—D]) (12) mi s 2 0% A y iYYOl 4
_ (m—23)/2,
and hi fOI’ X[ WO(Z,Y)] Vm(Z,Y)
1 1-m)/2 !
L = 1= Wotxy) ™2 [ dum o we(a,y)]
hi:Gi+§ij Ik] (13) 0

X[ =Wo(a,y) 1™ "2V (a,y), (20

It should be noted that at this stage the boundary conditions
for Eq. (1) and thus the ones for E¢LO) are left completely where g=y+u(x—y). One notes, however, that with Eq.
unspecified. For simplicity we restrict the discussion to the(17) it is a far from simple task to evaluate even the first
case of “natural” or “inaccessible” boundarig®]. From a  expansion coefficientd/;. The calculations very rapidly be-
mathematical point of view, diffusion problems of such acome arduous. A closed-form solution fv, is therefore
type are easier to solve since eaternalboundary condi- particularly desirable. We suggest that with this technique
tions are required for the determination of the expansion coeach problem should be studied separately in curved mani-
efficients. folds. )

For m=0 the equation reads In flat spaces the curvature tensor associated With

vanishes, which considerably simplifies calculatig,. In
Dij (4 W) (9;Wop) +2W,=0. (14)  this case, the matrig" must satisfy the equation



g =T} 9", (21)
whose formal solution reads
L. X .
g”(x)=exr“ dz I (2)|g" (). (22)
y
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(20) are doable analytically. Otherwise numerical quadra-
tures are required. The latter restricts considerably the utility
of the series representation. Another disadvantage is that the
present results are applicable to the Fokker-Planck equation
whose diffusion matrix is invertible. Its invertibility, how-
ever, is not a generic case. There is a wide class of equations
with noninvertible (singulay diffusion matrices that play a

Moreover, there exists a change of variables determined byentral role in many scientific areas, most notably in chemi-

cal kinetics, theory of nucleation, and nonlinear optics, to

Qi(x)= jxdzlgji(z) (23) name only a few2]. Below we present an alternative power
' : series representation free of these two drawbacks.
such that admits a closed-form solution to E#j7),
IIl. POWER SERIES EXPANSION FOR THE AVERAGE
1 5 OF DYNAMICAL VARIABLES
Wo(x,y) =~ 5|Q(X) —Q(y)|~. (24) . : :
oY 2| ) 2 It is known that the time evolution of true Fokker-Planck

systems, Eq(l) with c=1 andV(x) =0, can be studied in a

eformaIIy equivalent way by following either the distribution
function or the average of the dynamical variable of interest.
The latter is defined by

With Eq. (24) the first few terms of the present expansion ar
easily determined explicitly to give

1 x -
W=+ [ dzDiah @, (@9

<a(t)>=f dx P(x,t)a(x). (29)

1
sz_fodu V2(Z), (26)

It is a simple matter to show that E@9) can be cast into the
form

1 N1 11
Ws==5&Wot 76t 76 Wo— Efod“ u(1-u) <a(t)>=f dx P(x.0)A(X.1), (30)

X[Dij(d5-TaVall7 (27)

where the functionA(x,t) obeys the backward Fokker-

HereV, is a known function Planck equation

FA(X, 1) =LTA(X,t)= E D;; (x)37; + Gi(x)&i}A(x,t)
(31

1 ) n
Zfl_fz Wo— 2511
(28)

Z=Q Q(y)+u(Q(x)—Q(y))], and Q"' means the in-
verse transformation fror® to x, i.e. Q {Q(x)]=x.

1 . -
V,=V+ E(aihi+F{jhi+D”hihj)+

supplemented by the initial conditiok(x,0)=a(x). Our aim
is to develop a power series representatiorn( &(tt)) that is

It is a simple matter to verify that the various different valid and easily implemented irrespective .of the particular
Taylor series representations available for the propagat prm of the Fokker-Planck operator. A straightforward way

[37,39,41,42 follow from the above results in a very natural [0F @chieving this is to use the ansatz
way for 7=t. We also emphasize that the evaluation of the
expansion coefficient8V,, requires no additional computa-

(a(t))=an,r™, amzf dx P(x,00An(x), m=0,
tional effort compared to those of the Taylor series expan-

sions. The connection of the present results with the (32
harmonic-oscillator representation of the propagator develeorresponding to the expansion

oped in our earlier papef43,44] is not so easily established.

Although all the series representations are formally equiva- Ax,tH)=A,(X) ™, m=0. (33
lent, there can be practical advantages to choosing one over

the others. When studying complex anharmonic systems, thEhe associated recursion relation reads

present expansion is the more natural choice. One of the me1

advantages in the use of this expansion, apart from its gen MAL ) =L Ar 10— S i A(X), (34)

erality, is that it is expected to produce a more rapid conver- =
gence due to an appropriately chosen time transformation.
Finally, we note that the present results are easily generalizeghere the summation rule fon is not implied and_" is the
to the case of time-dependent operaf@t4]. backward Fokker-Planck operator defined by E2fl). As

Two disadvantages of this method, which are also inherseen from the above equation, the expansion coefficients of
ent to almost all the other series representations of the prop#ie serieg33) are readily determined recursively in terms of
gator, are as follows. The method is efficient if and only if the Fokker-Planck coefficients and their derivatives, starting
the coefficients of the Fokker-Planck equatidn G;, and  with Ag(x)=a(x) (A,=0 form<0). In contrast to Eq¥9)
D;; are simple enough so that the various integrals in Egand(10), the calculations are rather trivis¢gardlessof the
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specific dependence &f, G;, andD;; on x. What is also ~ With Co(x) =InP(x,0). One might think that the above ex-
pleasing is that the method outlined above is applicablePansion could be successfully employed for overcoming the
whether the diffusion matrix is invertible or singular. negative sign problem. But our calculations performed with
We believe this method will provide the necessary foun-Eds.(39) and(40) for model systems show that the utility of
dation for systematically treating a variety of physically these equations is rather restrictive with respect to the initial
meaningful models, such as a Kramers equation and §onditions and the Fokker-Planck coefficients. We have
colored-noise probleni2,32), that are difficult to treat by found, in particular, that an accurate description for the
other means. For example, it is hoped to greatly help visualwhole time domain is obtainable with this technique if and
ization of various correlation functions of the form only if the width of the initial distributionP(x,0) is suffi-
ciently large, while the coefficientg, G;, andD;; are suf-
ficiently smooth functions ok. Otherwise it works no better
<a(t)b(0)>=f dx dy a(x)P(x,t|y)b(y), (35  than the standard Taylor series expansion, being useful for
short times only.

which play an important role in the theory of stochastic pro-
cesse$46]. One also notes that the method can be modified IV. TRUNCATION SCHEMES
to cover truly nonlinear Fokker-Planck equations whose co-

efficients exhibit a functional dependence on the distribution{wo factors that render their recursion relations open. First

function P(x,t) [45]. These equations arise very naturally in the solution of the Fokker-Planck equation cannot, in gen-

many branches of physics and chemistry such as plasma . J 2
4 : , ; .eral, be expanded in terms of limited order polynomials in
physics, nonlinear optics, and theory of nucleation, but their

solution presents a sufficiently difficult and often impossibIeT _(or_ n. A truncation scheme_must therefore _be employed to
task. eliminate this openness. A trivial procedure is to neglect all

Before closing this section two remarks are in order. First,terms of higher o.rder than sorma_zM. Th? approximate
lution thus obtainedn the following we will use the sub-

. . . S0
we note that the corresponding series representation for the . ) S .
distribution function, which is equivalent to Eq33) and scriptM in order to distinguish it from the exact solutiois

f " licable t Fokker-Planck ¢ pres_ur_’nably correct ir_l the s_hqrt-to intermediate time_regime.
ormally applicable to any Fokker-Planck operator, reads But it is not necessarily valid in the limit—oc. So a fruitful

_ m way of overcoming the openness is to employ a truncation
POGO=Bn()7",  m=0, (36) scr?/eme based on ?he stat?onary solution of tF;wyprobIem under
where the expansion coefficierfs,(x) are generated by study prpvided 'ghat is known exactly. One notes that this
concept is meaningful only for a true Fokker-Planck process,
m-1 Eq. (1) with c=1 andV(x)=0, in which case it is deter-
MBy(X)=LBr 1)~ 2, iémBi(x),  (37)  mined by

Generally, series representations are not closed. There are

P(X)=lim P(x,t|y)=Py(X). (41
with By(x) =P(x,0). One must be cautious, however, on the t—o

use of this expansion, as a finite truncation of the series in . . )
Eq. (37) does not possess an important property that idlere Py(x) is the eigenfunction of the forward Fokker-

shared by the true probability distribution, namely, Planck operator qorresponding to the .Iqwest eigenvalue
No=0, LPy=0. It is also worthwhile noticing that an ex-
P(x,t)=0 Vx,t. (3g)  Plicit integral expression for the stationary distribution in

terms of the driftG; and diffusionD;; coefficients exists if
Of course, the inequality38) has no sense in real-time and only if these coefficients satisfy the so-called potential

quantum-mechanical calculations, E¢l) with c=1, in  conditions[2]. . _ _ .
which caseP(x,t) is a complex function, but it generally In order to m_troducePSt into the serieg9), we first write
holds for a diffusion processE1). the propagator in the form

Another remark concerns an exponential power series i
representation of the form Px.tly)=F(xy:t) Pu(x.ty), (42

whereF is a correction function defined by E12). The
above equation is actually exact for any truncation number
M; the only advantage of breaking up the propagator accord-
ing to Eq.(42) is that we can thus use on the right-hand side
of Eq. (42) instead of the exact correction function its ap-

N1 proximation, which needs be accurate only in the long-time
Om 1t L(9iD3) = Gj19;Crm-1 limit. In constructing such an approximation it is sufficient to
satisfy the conditions

P(x,t)=exdCn(X)7™], m=0, (39

whose coefficients are determined by

1
mCm=(§(93D,J—(9,G|—V
m—1

_ 1
2 itn-iCit 5Dy im F (,y:) = P30/ Pay (x,t—1y),

t—o

X

m—1
JiCm_1t kgo ((9iCk)(¢9ij—1—k)} (40) t"_T)F(X’y?t)Zl"' o(7), (43
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with K=M —1. The latter inequality follows from the fact our previous article§43—-45. Some of these methods are
that the error due to truncating the series in E@). at very difficult to implement and almost all of them rely on the
m=M is of the order ofM~* (see below. A simple choice specific properties of the considered equation limiting the
for F reads applicability of the methods to certain kind of situations.
Vo1 In the reminder of this section, a general error controlled
] T method is outlined that is rather simple, but also rigorous and
F,Mx,y,t)zexp{ (T_w) I[P/ Py (x,t—=2[y)]1, allows the efficient, self-consistent treatment of the present
(44) series expansions without resorting to any external observa-

o tions. To be specific, we restrict our considerations to the
where 7,=7(t—0o). The global approximation so con- fynction

structed,
1—e M
P%\J/I(X!tly):FM(leit)PM(X!Hy)! (45) T= w+(/_L_w)eflit (49)

is obviously exact fot=0 andt=c. One can thus expect The corresponding coefficients are given by
that it would be reasonably accurate in the intermediate-time

domain as well. For completeness we also present an analo- L=p—20, &H=o(w—p), &=0, i>2.
gous global approximation fok(x,t). It reads
One can easily check that far= w this time transformation
reduces to that already used in our earlier papégs-45,
Eq. (4), while for =0 it gives the generalized Euler trans-
formation (6). Clearly, the best way of treating a power se-
where ries expansion is to study its convergence properties as a
function of free parameters. Unfortunately, establishing gen-
_ eral convergence properties for the series representations de-
ASt_J dx Ps(x)a(x). “7) veloped in Secs. Il and Il is a quite difficult task. The ex-
] . ansion coefficients of these representations are determined
Clearly, the same technique can be used in order to properbacyrsively and therefore cannot be expressed in closed form.
incorporate a known time-dependent long-time limit solutionsmce, however, the error introduced By (x.tly) and
of the problem of interest, whatever the Fokker-Planck op: (x t) due to the series truncation is a function of the free
erator Is. _ _parameters;, a rigorous way for their determination is to
The other openness comes from the series representatiginimize this error in one or another sense. Let the error
of the derivatived7/dt, Eq. (7). A straightforward way of operator bep=a,—L. When applied to the approximate

removing this openness is either to truncate the sérieat propagatorP,, , it leads in a straightforward way to the fol-
m=M —1 or to use a function(t) such that its time deriva- lowing expression for the error:

tive is expanded in terms of a limited order polynomial in

7. In both cases, the expansion coefficiefjitare considered

as free parameters and the problem of importance is to de- gp=1{ &(M—1)Wy ™
termine them so that the approximate soluti®y,(or Ay) is

T M
T—) [As Au(xt—)], (46

[

A (X, 1) =Apn(x,t)+

correct over as large as a time interval as possible. A simple, +[Di; (3 Wo) (3, W+ 1) — MWy 1] M-1
intuitive approach to the determination of the free parameters
is to fix them from the sole knowledge of some relevant 1 M M o
values of the system under study. Usually the available in- - EDijkzz r:’v|2+2_k (W) (W) T2 Py
formation is the normalization condition
(50)
NEJ dx o(x,t)=1, (48) A good approximation for the propagator can then be ob-

tained by minimizing the error functional
where 6=|W¥(x,t)|> for the Schrdinger equation and ;
0= P(X_,t|y) for the true Fokker-Planck e_quatlon. Wlth the |P(w,M):f dtf dx[ep(X, 1) * [ep(X,1)] (51)
approximate propagatdty, , Eq.(48) constitutes an integral 0
equation for the unknown parametetsas functions of time.
Although the results in selected examples appear to be accwith respect tow and . Here the asterisk denotes the com-
rate [44], such a choice of; would seem to lack a sound plex conjugate, whil¢0,T] is the interval in which an accu-
theoretical basis. Besides, for cases with more than one frg@te description is required. We note that the optimal values
parameter the solution of E8) is not unique. What is also of w andu so obtained turn out to be rather insensitive with
important is that this method is not generally suitable for theespect toT. On the other hand, as the truncation error
power series expansion for the average, B8), as the cor- &€p(X,t) does not necessarily tend to zero witlgoing to
responding series expansion for the propagator(88), au-  infinity, the upper integration limit ovetr in Eq. (51) has to
tomatically satisfies the normalization condition, no matterbe chosen finite, in order to avoid divergence. We again em-
whatt, M, and & are. The same is true, in one sense orphasize that the above choice @fand u is not norm con-
another, for the other methods we have already discussed #erved in the sense that the approximate propadafpiso
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constructed does not satisfy the normalization condit48). each time momertt can also be constructed in an analogous
Of course, it is possible to minimize the err@0) with the  fashion but we will not do so here.

constrain of the unit normalization, but we have to repeat this

procedure at each time moment of interest. The latter re- V. NUMERICAL RESULTS

quires a reasonable computational effort, if the number of

time points is small enough, and becomes very arduous oth- It will now be our aim to illustrate the power of the
erwise. Fortunately we have found that an accurate descrigresent formalism on a model system that is physically
tion in the entire time domain can be achieved even thougieaningful and simple enough to enable a comparison with
the free parameters are fixed, i.e., time indepenfiéfit In  exact results obtained by other means. We will deal with one
this case, the error introduced Ry, due to the inequality Of the most extensively studied problems, namely, the so-
N#1 is easily reduced by a simple procedure of normalizacalled problem of the decay of an unstable s{@&32,47—
tion. What is also pleasing is that the normalization of the58] (see also a collection of references in R&6]). It con-
approximate propagatd?,, by itself is not far from unity ~cerns a relaxation process from an initially unstable state to a
and the differencé&N—1 very rap|d|y decreases with increas- final stable one that occurs in a bistable system driven by

ing M (see Fig. 5 in Sec. V external noise. Two different cases will be distinguished.
Analogously, defining the error operator as=g,—L™", First we consider the case of Gaussian white noise with the
one gets aim to illustrate the relative efficacy of both the two-
techniques presented in Secs. Il and 11l and the two trunca-
ea=p A%, =EMAY) ™M= (M+ 1) Ay 4 () 7 tion schemes discussed in Sec. IV. As a second example, we

consider the relaxation of an unstable system driven by ex-

ponentially correlated Gaussian noise. It is described by a
and two dimensional Fokker-Planck equation with a singular dif-

fusion matrix and therefore the method outlined in Sec. lll

(0, p2) = JTdtj dx 2(xH)P(X.0). (53  can only be tested in this case.
0

. . . . o A. White-noise problem
Minimizing the above functional provides one with a mini-

mal (in a least-squares sensverage error ofa(t) )y in the
interval[0,T] and, consequently, a reasonable choice of th
free parameters for a given truncation numbkrOne must

A typical model repeatedly studied by many authors
é(vithin this context is that governed by the one-dimensional
Fokker-Planck equation

be cautious, however, on the use of E&3) with a G P(X,t) =0, (x3— X+ D3y P(x,t) (563
S-function initial condition, in which case it provides a mini- tas X X o
mal average error in the functiof(x,t) for a given point P(x,0)= 8(). (56b)

x=y rather than for allx’s. The free parameters so deter-

mined usually fail to produce accurate results in the intermey; gegcribes the dynamics of a Brownian particle that moves
diate to long-time domain. A simple way of overcoming this i, the symmetric bistable potentitl(x) = x¥/4—x2/2, start-
problem is to minimize the functiondb3) with the con-  ing at the top of the barrier, in the large damping limit. The

straint corresponding Langevin equation reads

ay (t—o) = aq. (54) x=x—x3+1(1), (57)

In the case that the stationary solution is not known exactly, . . . . . .
we suggest to employ in Eq.(53), instead of with f(t) being Gaussian white noise normalized to
P(x,0)=6(x—y), a Gaussian distribution function centered
aroundx=y.

Fortunately, the same problem does not arise when using
the global approximatio46), whose error reads

(f(1))=0, (f(t)f(s))=2Ds(t—s). (58)

Accurate results for this model are easily obtainable for
short times, e.g., by using operator decoupling techniques
[32]. Exact results are also available in the long-time limit

9_ *+ Al
ea=p Au(xt) when the system reaches equilibrium

_ _ w, M l)Ml © -1
=EMAWC)(T— 7) T Too \ Teo Pst(x)zrf dxexd —U(x)/D]} exd —U(x)/D].
X(1+ &7+ &) [ A An(x t—2)].  (55) (59

It is seen to go to zero astends tox regardless of the Beyond the above limits, there have been a number of more
choice ofu and w. Therefore, the upper integration limit in or less equivalent heuristic methods to handle &&) for

Eqg. (53) can be chosen infinite in this case. It is of interestvanishingly small fluctuations, i.e., fdD tending to zero
that the optimal values of the free parameters thus obtainel®8,32,47—-58& All these attempts, which are collectively re-
produce, more or less, accurate results with both truncatioferred to as scaling theory, have been restricted to one-
schemes discussed above. Finally, we note that a timedimensional systems. Moreover, their utility, with a few ex-
dependent criterion for minimizing the truncation error atceptions, is restricted to this particular equation with this
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FIG. 1. Distribution functionP(x,t) for the model(56) for FIG. 2. Same as in Fig. 1, but foD=0.05 and for

D=0.5att=0.25, 0.75, and 10. The solid and dashed lines are fof =0-5. 1.5, and 10.
the exact andP3(x,t) evolutions, respectively.

MA n=[k=&(M=1)JA m-1—(K=2)Ay_om-1
particular initial condition, and some of these solutions com-

D
pletely neglect fluctuations in the final regime tagoes to + E(k+ D(K+2)Agiom—1—&(M=2)Ay n_».
infinity.
These observations are in drastic contrast to the present (62

power series expansion formalism. Apart from its generality,
which has already been illustrated in quantum-mechanicalyjth Eq. (62 the expansion coefficientd, ,, are readily
quantum-statistical, and stochastic calculati[ﬂﬁ;—ﬁ, itis  determined recursively starting with, = a;(. The above
both theoretically and numerically advantageous with respeGicursive procedure is slightly different from that developed
to other approximate methods available in the literature iny qur earlier papef45], namely, having the expansion co-
that it is rigorous and capable of extension to higher orderggficients A, determined allows one to evaluate via Eq.
of approximation. The treatment is fairly straightforward and(32) the time evolution of the average of a given function
systematic and allows one to properly incorporate the tru%(x) [e.g., a given momerixi(t))] for any initial condition
stationary solution of the considered problem. What is alsqg(x,o)_ By contrast, the recursive procedure of Ri5]
important is that our formalism is not asymptotic in the nOiseformaIIy provides one with all moments of the Fokker-
intensityD. In particular, forD=0.5 an accurate description pjanck equation at once, but for a given initial condition. The
in the entire tllme (_jomaln is already attained in the Iowest.— generalization of Eq(62) to arbitrary Fokker-Planck pro-
order approximations. By these we mean truncated seri€sses with polynomial coefficients is straightforward.
representations with a minimal number of terms necessary tﬂnalogous recursion relations are also derivable for the
involve all the free parameteis of the time transformation propagator expansion, E¢9), but we do not present them
used. With the functionr(t) defined by Eq.(49) they are  nere for the text economy.
P,(x,tly) andAz(xt). _ The time evolution of the approximate distribution
But before presenting our results we show a more S|mpI¢>3(X't) is shown in Fig. 1 forD=0.5 and compared with
method to evaluate the expansion coefficients of the seriggat optained by a finite-difference methi®0]. Good agree-
(33). The method is applicable when the dynamical variablenent hetween approximate and numerically exact results is
can be expanded as a polynomialxnso are the Fokker- achieved for all times including— . With decreasingd
Planck coefficients. To be specific, let us consider thene agreement only slowly becomes worse. This is seen from
Fokker-P_Ianck equatio(b6a and let the functiora(x) be a Fig. 2, where an analogous comparison is given for
polynomial, D=0.05. The relative efficacy of both methods developed
here is illustrated in Fig. 3 fob =0.05. This figure shows
N the relative error in the second moment made by using
a(x)= E a X, (60) Pwm(x,t) for _different truncation numbenvl. Also_ shown are
k=0 results obtained with the power series expansion for this mo-
ment (x?(t))y . As evidenced by Fig. 3, both approaches
work equally well and provide a reasonable accuracy even in
Then, it is not hard to prove that the expansion coefficientshe lowest-order approximations. The correspondirey, of
Am(x) are polynomials as well, the same order im) global approximation®g,(x,t), deter-
mined by Eqs.(44) and (45), are not shown in the above
figures, as these approximations are found to be almost in-
distinguishable from the numerically exact results; so are the
global approximations for the second moment determined
through Eq.(46). In order to demonstrate the relative effi-
cacy of the ordinary truncation scheme and that based on the
and their calculation is substantially simplified if one uses, intrue stationary solution, we present in Fig. 4 the relative error
place of Eq.(34), the algebraic relation in the second moment made by using?(t))y and

N+2m

An(x)= go A X, (61)
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0.1

RELATIVE ERROR

FIG. 3. Relative error[(approximatg¢— (exac}]/(exac}, in the
second momen{x?(t)) for the model(56) for D=0.05. Dashed
lines, results obtained with the power series expansion for the mo-
ment(x2(t))y for M=3, 4, and 5; solid lines, results of the series
expansion for the propagaté,(x,t) for M=2, 3, and 4.

(x3(t))§, for different truncation numbersM and for
D=0.05 and 0.01. For the sake of comparison these calcu-
lations have been carried out with one and the same time
transformation given bys=w=1. It is seen that successive
higher orders reduce the error over a larger rangeanid yet

the results obtained with the global approximation(t))$,

[Eq. (46)] are much more accurate than those of the corre-
sponding ordinary truncation schengg?(t))y . It is also
worthwhile noticing the sensitivity of the convergence rate to
the choice of the free parameters. As evidenced by Fig. 3,
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FIG. 5. Relative error in the normalizatidieqg. (63)] for the
model (56). The dashed, dot-dashed, and solid lines are, respec-

tively, for the results obtained usiriy,(x,t) with M=2, 3, and 4.
(@) D=0.5 and(b) D=0.05.

should the free parameters be determined by E&f$.and
(54), the power series representatior(t) ), converges suf-

0.2

i

O

i

i

[85]

w

=

|_

<

|

Ll

o

(a)

o

O

i

i

Ty

w

=

tﬁ- -0.25 -
o \10
o N

-0.5 ==

(b)

FIG. 4. Relative error in the second momep?(t)). The

10

ficiently rapidly and a very accurate description is already
attained forM =5. By contrast, with the time transformation
given by u=w=1, an analogous level of accuracy in
(x2(t))w is achieved only foM>20 [see Fig. 4a)].

Finally, we recall that the present choice of free param-
eters is not norm conserved. The same is true for the various
different numerical schemes available in the literature for
solving Fokker-Planck and Schiimger equations, most of
which do not preserve the norm of the solutisee, e.g.,
[3,9,10,14,17. It is well known, however, that a dramatic
reduction of normalization error is already attained just by
replacingPy (x,t) by Py (Xx,t)/N(t), whereN(t) reads

N(t)=£;dx Py (X,1). (63

The accuracy achieved with this simple procedure seems en-
couraging(see Figs. 1, 2, and)3Thus the interesting issue it
remains to discuss is the following: How large is the error in
N as a function of the truncation ord&i? This issue is
addressed in Fig. 5, which shows the relative error in the

dashed and solid lines show, respectively, the error of the Ordinaryqrmalizatiqn of the apprqximate propagal@(,,(x,t)., ob-
truncation scheméx?(t))y and that of the global approximation tained for different truncation numbeh, as a function of

(x3(t))¥, obtained with different truncation numbersl. (a)
D=0.05 and(b) D=0.01.

time. The calculations are performed fBr=0.5 and 0.05

with u=w=2 and u=w=0.45, respectively. This error is
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seen to increase witD going to zero, but each successive 0.35
higher order reduces it considerably. 10
x
e} 15 30
B. Colored-noise problem E
As a second and more challenging example, we consider w
the relaxation of an unstable system driven by a noise with a W 0 DN
finite correlation time. To be specific we restrict the discus- = N a0 |
sion to a system governed by the Langevin equation é R
S 20
. o AN
x=x—x3+v(t), (64) ~~15 ]
-0.35
where the driving noise term(t) is modeled as the station- 0 i 10
ary Ornstein-Uhlenbeck process @
a
v="—v+f()], (65 0.25
25,20 40
with y~1 being the correlation time of the noise. The white- no: &
noise termf (t) appearing in the above equation is defined by E 0 -
Eqg. (58). As f(t) is Gaussian and has a zero mean, the noise w \\ ‘C\\ ________
v(t) is also Gaussian with statistical properties w NN 20
> \ ~~
— | S
(v(1))=0, (v(t)v(s))=Dyexp—vy|t—s|). (66 '5 -0.25 |- \\ 30 -
w AN
When y goes to infinity (short correlation timgs one can o Y 20
completely neglect the term in Eq. (65), thus reducing the o5l TTTo--oo
problem to that already studied in Sec. V A. For finits 0 10
the Fokker-Planck equation describing the pair stochastic (b) t
process X,v) reads
3P (X,0, ) =[dx(x}~x—v) + ¥, (v +D¥d,) IP(X,v,t). FIG. 6. Same as in Fig. 4, but for a colored-noise probjlExrs.
(67)  (67) and(69)] for D=0.01.(a) y=5 and(b) y=0.5.
Since the noise is assumed to be stationary, its probability k+2m r+m
distribution is given by Am(X,0)= A Eo Ai’j’mxivj’ (70)
i= =
2
—U
Pv(v)=(27-ryD)l’zeX[{m)- (68 and their calculation is substantially simplified if one uses,

instead of Eq(34), the algebraic relation

MA j m=[—yi—&(M=1)JA jm-1t(+ DA - 1m1
—(i=2)A 2 m-1tDY*(J+ D)(j+2)Ai jr2m-1

_ —&(M=2)A; jm-2- (71)
We note that the above problem has already been studied
in Refs.[57,58, and two approximate solutions have beenln particular, with Eq.(69) the moments of the stochastic
obtained. Both solutions are asymptotically valid in the limit process are obtained by a series
of vanishingly smalD, being a straightforward extension of Kb Lrens
the scaling theory to systems driven by an Ornstein- (x 1)=0,

Assuming further thax andv are statistically independent at
t=0, one can write their joint distribution as

P(x,v,0)=8(x)P,(v). (69

Uhlenbeck noise. We also note that the diffusion matrix of m/2
Eq. (67) does not possess an inverse, while the equation it- k(1)) = 25—V A~ (VDY (72
self does not obey detailed balance. The former means that o) mE:O ,Zo (I =Dl Aoz m(¥D)'7" (72)

the power series representation of the propagator(®qis

not applicable in this case, while the latter property prevents Numerically exact results for these moments were ob-

us from making use of the truncation scheme based on thi@ined by a path-integral method described eaflg2] for

true stationary solution, as this solution is not known exactlythe choice of parametef3=0.01 andy=5 and 0.5. Figure
Our aim is to illustrate the utility of the method outlined 6 shows the relative error made by usif(t))y for dif-

in Sec. Ill in treating situations of such a kind. The momentsferent truncation numbers. Also shown is the error ob-

of Eq. (67), (xX(t)v"(t)), can be calculated in terms of Egs. tained with the global approximatiofx*(t))$, . The latter is

(33) and (34). Since, however, the functioa(x,v)=x"v" constructed in terms of the numerically exact results. For the

and the Fokker-Planck coefficients are polynomials in thesake of comparison, the calculation is again performed with

considered case, the expansion coefficiégiéx,v) are also u=w=1. As expected, foy=>5 the rate of convergence of

polynomials, the present method is almost the same as in the white-noise
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limit y=c [cf. Figs. 4b) and Ga)]. In both cases, an ad-
equate level of accuracy in the entire time domain is |P(w,,u)=f dx[LP(x,%[x)]?. (73
achieved forM ~30. With decreasingy the convergence
slowly becomes worsef. Figs. 8a) and 6b)]. The reasonis This is of interest considering the lack of a satisfactory ana-
that the expansion coefficients also become smaller in thilytical description for the stationary properties of a diffusion
case, and a larger number of terms has to be included in th&rocess without detailed balanf2]. Analogous results are
series(72) to obtain convergent results in the long-time limit. also derivable by application of the power series expansion
One can thus conclude that the present power series eraethod outlined in Sec. Ill. Two general approaches are pos-
pansion formalism offers a powerful tool for systematically sible in such a case: One can use a cumulant generating
treating nonequilibrium statistical mechanics. It is a methodunction formalism[14] or develop a variational scheme for
that can be applied to simple or complex systems and higheconstructing a distribution function in terms of known av-
dimensionality does not seem to present special problemg&raged59]. These approaches are planned to be discussed at
We also note the relative ease with which this method can bgreater length in a future paper.
implemented. Almost all calculations are doable analytically Another problem of importance refers to the classical rate
in a simple, economical way, thus allowing one to get accutheory. The thermally activated escape over a barrier repre-
rate results with minimal computational efforts. From thissents a decisive step in the dynamics of various processes in
point of view the present method is both theoretically andphysics, chemistry, and biology, and a great deal of effort
numerically advantageous with respect to the various aphas been devoted in recent times in order to determine the
proximate algorithms available for numerically integrating transition rate over the barri¢60]. General expressions for

the Fokker-Planck equatiafi). this rate are derived by linearizing the original Fokker-
Planck operator in the vicinity of the barrier t¢f1]; how-
VI. CONCLUSION ever, they are valid if and only if the potential barriglJ is

, , , ) . sufficiently large when compared to the energy of thermal

In this work, the power series expansion formalism iSmqtion 871, so that there are no other quantities that are
developed for general Fokker-Planck-Satinger processes. comparable or smaller thagU) ~L. If this is not the case,
The idea introduced here is directly applied to derivingihe rate expressions may fail grosgk]. One also notes that

power series representations for the propagator and for the sertyrhation procedure that has recently been developed for
average of dynamical variables. Recursion relations are obspaining finite barrier corrections of the raf2] is too
tained for the expansion coefficients that carabalytically complicated to be useful beyond second order in

evaluated for any number of degrees of freedom. The recUrgAuU)—1. By contrast, the power series formalism devel-

sive evaluation of the expansion coefficients can be carriedheq here offers a convenient tool for systematically treating
out systematically until a given level of accuracy is reached,s escape problem both analytically and numerically. Aside
The treatment is fairly straightforward and allows one o the two aforementioned examples that are currently in-

properly incorporate the true long-time limit solution of the vestigated by the present author, this formalism can be ap-
problem under study whenever that is known exactly. In the,jieq to many other fields involving Fokker-Planck, Bloch,
event that there is no closed-form solution of the stationangng schidinger equations.

problem, an approximate stationaground-state solution
can be obtained recursively from the expansion for the
propagator, Eq(9), taken aty=x in the limit t=c. The
corresponding free parameters are determined variationally, Financial support of the DirecaioGeneral de Investiga-
e.g., by minimizing the error functional cion Cientfica y Tecnica of Spain is greatly appreciated.
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