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Time mapping in power series expansions for the time evolution operator

A. N. Drozdov*
Fı́sica Teo´rica, Universidad de Sevilla, Apartado de Correos 1065, Sevilla 41080, Spain

~Received 18 July 1996; revised manuscript received 9 September 1996!

Two formally equivalent methods for systematically evaluating either the propagator or the average of
dynamical variables are developed by expanding these quantities in a power series in a given functiont(t).
The expansion coefficients are analytically determined by recursion relations. The methods are an extension of
our power series expansion formalism@Phys. Rev. Lett.75, 4342 ~1995!# to a general Fokker-Planck-
Schrödinger process. The role of the time transformation in accelerating the series convergence is emphasized
and the generalization to an arbitrary conformal time mappingt(t) is presented. An appropriate truncation
scheme is suggested to eliminate the openness of the series representations. We also develop a regular proce-
dure to minimize the truncation error. The formalism thus constructed provides a basis for an efficient error
controlled treatment of simple or complex systems with any number of degrees of freedom. The application to
a well-known problem of the decay of an unstable state driven by exponentially correlated Gaussian noise
shows that an accurate description for arbitrarily larget is attained with a few terms of the present expansions
and their utility is rather insensitive with respect to the noise strength. This is in contrast to the various
available approximate solutions of the problem that are all asymptotic in the noise strength.
@S1063-651X~97!12102-X#

PACS number~s!: 02.50.Ey, 03.65.Ge, 03.65.Db, 05.30.2d
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I. INTRODUCTION

There is a wide class of phenomena in physics, chemis
and biology whose dynamics and statistical mechanics
properly be described in terms of Fokker-Planck, Bloch, a
Schrödinger equations@1,2#. These equations, which will b
subsumed under the name Fokker-Planck equation, typic
have the form~a summation over repeated indices is alwa
implied, if not stated otherwise!

] tP~x,t !5cLP~x,t ![cF12 ] i j
2Di j ~x!2] iGi~x!

2V~x!GP~x,t ! ~1!

and are to be solved with some initial conditionP(x,0). Here
L is the Fokker-Planck operator defined by Eq.~1!,
xT5(x1 , . . . ,xn), and the numberc defines the problem un
der study: for complexc5ı Eq. ~1! is a Schro¨dinger equation
and for c51 it is a Fokker-Planck or Bloch-type equatio
Sincec can always be absorbed intoL, we setc51 from
here on. General solutions of Eq.~1! can be derived in many
different ways, e.g., by using path-integral methods or eig
mode expansion@1,2#; but the solutions thus obtained a
formal. There are very few models that can be solved exa
with presently known mathematical techniques. This sit
tion gives rise to many stimulating opportunities for the d
velopment of approximate procedures to analyze such e
tions numerically. Widely used procedures rest on basis
expansion @2–7#, path integrals@3,8–14#, iterative time-
dependent propagation schemes@3,15–20#, and moment ex-
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pansion@21–23#. Numerical schemes can, in principle, pr
vide very accurate results with intensive computatio
efforts. Their utility, however, is strongly limited by the sto
age requirements and execution time that grow exponent
with the dimensionality of the problem under study. Vario
approximate methods could also be very efficient in anal
cally treating Eq.~1!, provided that their assumptions a
satisfied. Some of these methods rely on the specific na
of the equation and almost all of them involve approxim
tions that limit their applicability to certain favorable re
gimes of parameter space and/or initial conditions. T
reader is referred to various quasiharmonic and quasia
batic approximations@12,24–26#, as well as to perturbation
techniques based on the generalized Trotter formula@27–
32#, Dyson series expansion@33,34#, semiclassical approxi-
mation@35,36#, and Taylor series representation int @37–40#
~see also a collection of references in Ref.@39#!. The latter
method is particularly efficient from the computational po
of view. Being formally exact, a Taylor series representat
of the time evolution operator, in contrast to those obtain
in terms of path-integral methods and eigenmode expans
provides a very natural basis for thesystematic evaluationof
the fundamental solution~propagator! of Eq. ~1!, satisfying
the initial condition

P~x,t50uy!5d~x2y! ~2!

in a straightforward, analyticalway.
In the following, by a Taylor series representation of t

propagator we will mean any representation of the form

P~x,tuy!5K~x,tuy!Z~S!,

S5tmPm~x,y!, ~3!

whereK(x,tuy) andZ(S) are given functions. The existing
approaches are not generally different from each other,
rather their choices for these functions@37–40#. Depending
on the definition ofK andZ, different recursion relations fo
9
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55 1497TIME MAPPING IN POWER SERIES EXPANSIONS FOR . . .
the expansion coefficientsPm are derived by inserting Eq
~3! into the original equation and equating like powers int.
The recursion relations are simple enough to permit the a
lytic evaluation of the expansion coefficients for any numb
of degrees of freedom in many situations of practical inter
Analogous results are also obtainable by other me
@35,41,42#. But the reader can readily verify that the deriv
tion outlined above is considerably simpler and shows m
systematically how terms of arbitrary order can be de
mined. One also notes that many other available series
resentations for the propagator though systematic, are pu
formal and therefore no more simple to implement than
original Fokker-Planck equation@33,34,36#.

Although the Taylor series expansion method can be u
to solve general Fokker-Planck equations@39#, its conver-
gence has not been theoretically proven. However, the
culations, performed on model systems using Eq.~3! with
different functionsK and Z, show that the utility of the
method is in general restricted to short times@37,38,43–45#.
The method is actually accurate in this limit if one trunca
the series at high enough order. With increasingt the number
of terms necessary for obtaining accurate results grows
rapidly, and beyond sometmax that is usually noticeably
smaller than unity, the expansion fails to converge with
finite number of terms involved in the series. Even thou
any reasonable number of the expansion coefficientsPm are
obtainable analytically, e.g., by using a computer alge
manipulator, it is practically impossible with this techniqu
to approximately evaluate intermediate-time dynamics,
say nothing of dynamics in the whole time domain@37,45#.
The reason is that a finite-order truncation of the series~3! at
m5M , as t goes to infinity, also tends to plus or minu
infinity depending on the sign ofPM(x,y). This is the case
regardless of the specific form of the Fokker-Planck opera
and initial conditions.

In a recent series of papers@43–45#, we have presented a
alternative power series expansion formalism that is free
the above drawback. Its key points are representing the
propagator as a product of the harmonic-oscillator propa
tor with the configuration function and expanding the exp
nent of the configuration function in a power series in
given functiont(t) in place of t. The explicit form of the
function t(t) introduced in Refs.@43–45# reads

t5
1

v
~12e2vt!. ~4!

This particular time dependence has been chosen as
associated with the width of the reference harmon
oscillator propagator and so it is hoped to give a reason
time scale in a general case. From a computational poin
view, the most appealing feature of this approach is perh
that the fictitious timet maps the singular pointt5` to
finite t51/v. In addition, the frequencyv, which is a free
parameter, can be chosen such that the convergence o
corresponding series int is as fast as possible. Numeric
applications to various physical models show this formali
to be a dramatic improvement over the existing Taylor se
expansions of the propagator, Eq.~3!, in that it converges
much better over a much broader range oft @43–45#. How-
ever, the results thus obtained are not exhaustive with res
a-
r
t.
ns

e
r-
p-
ly
e

d

l-

s

ry

a
h

a

o

r

f
ll
a-
-

is
-
le
of
ps

the

s

ect

to methodology. Their utility is generally restricted to equ
tions with constant and invertible diffusion matrix and, wh
is also important, to this particular dependencet of t, Eq.
~4!. Moreover, the convergence rate is found to be very s
sitive to the choice of the free parameterv involved in the
expansion, but we have failed to develop a rather rigor
and general method for its determination.

In this paper, two essentially analytic techniques for ge
erating series representations, one for the propagator and
other one for the average of a dynamical variable associ
with P(x,t), are presented. These are an extension of
power series expansion formalism@43–45# to a general
Fokker-Planck process, Eq.~1!, as well as to an arbitrary
dependencet of t. Our aim is to provide a systematic, erro
controlled strategy for grouping the terms in the Taylor s
ries ~3! so that the terms of the rearranged series decre
much faster. Clearly, this strategy permits the efficient
trapolation of the behavior of the series to its eventual s
for as large as a time interval as possible. A slowly conve
ing power series such as in Eq.~3! can always be cast into
the form

S5tmWm~x,y!, ~5!

wheret is an arbitrary conformal time transformationt(t)
satisfying the conditiont(0)50. Certainly, such a represen
tation of the propagator is actually equivalent to its origin
Taylor series representation. The only reward for making
problem more complicated is that we can thus apply all
machinery for sum acceleration to the new series Eq.~5!. In
particular, experience shows that the Taylor series in~3! is
usually an alternating one in a wide range ofx andy. There-
fore, one may expect that a generalized Euler transforma
of the form

t5
t

11vt
, ~6!

which is known to be ‘‘the old reliable’’ of sum acceleratio
algorithms for alternating series, would be especially use
in such a case. The advantage of this transformation is
when applied to almost any alternating series that is conv
ing or diverging algebraically, it yields a new series th
converges exponentially fast.

The general developments are given in Secs. II and III
the propagator and for the average of dynamical variab
respectively. Different schemes for truncating the series r
resentations are discussed in Sec. IV. Numerical calculat
for test systems are presented in Sec. V. Sections VI ends
paper with an outlook.

II. POWER SERIES EXPANSION FOR THE PROPAGATOR

Following the underlying idea of the present paper, o
lined in the Introduction, we first replace in Eq.~1! the time
derivative] t by that overt

] t5
dt

dt
]t , ~7!

where a series expansion int for dt/dt is assumed to exist
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1498 55A. N. DROZDOV
dt

dt
511jmtm, m>1. ~8!

In this expansion we have set, without loss of general
j051, in order to provide the equalityt5t for
j i50 (i>1). The inverse of the diffusion matrix
Di j5(Di j )

21, is also assumed to exist, thus permitting us
interpret it as the metric of a Riemannian manifold spann
by the variablesxi . Then, Eq.~1! can exactly be solved by
expanding the exponent of the propagator in powers
t(t)

P~x,tuy!5@~2pt!nD~x!#21/2exp@tm21Wm~x,y!#, m>0,
~9!

with D(x) being the determinantD(x)5det@Di j (x)#. It is a
simple matter to check that the ansatz~9! reduces the origina
problem to the following hierarchy of first-order coupled d
ferential equations for the expansion coefficien
$Wm(x,y)%:

Di j ~] iW0!~] jWm!2~m21!Wm2Vm50. ~10!

In Eq. ~10! the summation rule form is not implied, while
the inhomogeneityVm is determined in terms of lower-orde
terms (W215j2150),

Vm5
1

2
Di j ~] iW0!~] jW0!dm,01~] ihi1G i j

i hj1V!dm,2

1S hi1 1

2
DkjGk j

i D ] iWm212
n

2
jm21

1 (
i50

m21

~ i21!jm2 iWi

2
1

2
Di j F ] i j

2Wm211 (
k51

m21

~] iWk!~] jWm2k!G , ~11!

whereG i j
k stands for a Christoffel symbol

G i j
k 5

1

2
Dkr~] iD

r j1] jD
ri2] rD

i j ! ~12!

andhi for

hi5Gi1
1

2
DkjGk j

i . ~13!

It should be noted that at this stage the boundary condit
for Eq. ~1! and thus the ones for Eq.~10! are left completely
unspecified. For simplicity we restrict the discussion to
case of ‘‘natural’’ or ‘‘inaccessible’’ boundaries@2#. From a
mathematical point of view, diffusion problems of such
type are easier to solve since noexternalboundary condi-
tions are required for the determination of the expansion
efficients.

Form50 the equation reads

Di j ~] iW0!~] jW0!12W050. ~14!
,

d

f

s

e

-

To the best of our knowledge, there are no general soluti
of this equation for curved manifolds other than a form
expansion in terms ofh i5xi2yi derived by representing
Di j in a ‘‘product’’ form

Di j5gikgjk. ~15!

Due to the symmetry and reality ofDi j the real and symmet
ric matrix gi j always exists. It is generally defined as

gi j5w i
~k!lk

1/2w j
~k! , ~16!

with $w i
(k)% and lk( i ,k51, . . . ,n) being, respectively, the

eigenvectors and eigenvalues ofDi j . If one expands
W0(x,y) in powers ofh i , the formal solution to Eq.~14!
reads@39#

W0~x,y!52
1

2
u~h•¹!k21g21h /k! u2, k>1. ~17!

In the series~17! ¹ acts ong21 only, and the derivatives o
g21 are evaluated atx5y. The first few terms of this expan
sion can be determined explicitly

W0~x,y!52
1

2
Di jh ih j2

1

2
$Dr •G

••

r % i jkh ih jhk

1
1

24
$DpsG

••

p G
••

s 22]
••

2 D••% i jkrh ih jhkh r

1•••, ~18!

where the curly brackets denote complete symmetrizat
i.e.,

$Dr •G
••

r % i jk5
1

3
~DriG jk

r 1Dr jG ik
r 1DrkG i j

r !. ~19!

The rest of the equations in the hierarchy~10! are linear
with respect toWm and readily solved in closed form to yiel
@39#

Wm~x,y!5
1

2
@2W0~x,y!#~12m!/2E

y

x
dzi@] iW0~z,y!#

3@2W0~z,y!#~m23!/2Vm~z,y!

5
1

2
@2W0~x,y!#~12m!/2E

0

1

duh i@] iW0~q,y!#

3@2W0~q,y!#~m23!/2Vm~q,y!, ~20!

where q5y1u(x2y). One notes, however, that with Eq
~17! it is a far from simple task to evaluate even the fi
expansion coefficientsW1. The calculations very rapidly be
come arduous. A closed-form solution forW0 is therefore
particularly desirable. We suggest that with this techniq
each problem should be studied separately in curved m
folds.

In flat spaces the curvature tensor associated withDi j

vanishes, which considerably simplifies calculatingWm . In
this case, the matrixgi j must satisfy the equation
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]kg
i j5G ik

r gr j , ~21!

whose formal solution reads

gi j ~x!5expF E
y

x
dzkG ik

r ~z!Ggr j ~y…. ~22!

Moreover, there exists a change of variables determined

Qi~x!5Ex
dzjg

ji ~z…, ~23!

such that admits a closed-form solution to Eq.~17!,

W0~x,y!52
1

2
uQ„x)2Q„y)u2. ~24!

With Eq. ~24! the first few terms of the present expansion a
easily determined explicitly to give

W15
1

2
j1W01E

y

x
dziD

i j ~z!hj~z!, ~25!

W252E
0

1

du V2~Z!, ~26!

W352
1

2
j1W21

n

4
j21

1

4
j3W02

1

2E0
1

du u~12u!

3@Di j ~] i j
22G i j

k ]k!V2#uZ . ~27!

HereV2 is a known function

V25V1
1

2
~] ihi1G i j

j hi1Di j hihj !1S 14 j1
22j2DW02

n

4
j1 ,

~28!

Z5Q21@Q(y)1u„Q(x)2Q(y)…#, and Q21 means the in-
verse transformation fromQ to x, i.e.Q21@Q(x)#5x.

It is a simple matter to verify that the various differe
Taylor series representations available for the propag
@37,39,41,42# follow from the above results in a very natur
way for t5t. We also emphasize that the evaluation of t
expansion coefficientsWm requires no additional computa
tional effort compared to those of the Taylor series exp
sions. The connection of the present results with
harmonic-oscillator representation of the propagator de
oped in our earlier papers@43,44# is not so easily established
Although all the series representations are formally equ
lent, there can be practical advantages to choosing one
the others. When studying complex anharmonic systems
present expansion is the more natural choice. One of
advantages in the use of this expansion, apart from its g
erality, is that it is expected to produce a more rapid conv
gence due to an appropriately chosen time transformat
Finally, we note that the present results are easily general
to the case of time-dependent operators@44#.

Two disadvantages of this method, which are also inh
ent to almost all the other series representations of the pr
gator, are as follows. The method is efficient if and only
the coefficients of the Fokker-Planck equationV, Gi , and
Di j are simple enough so that the various integrals in
y

e

or

e
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e
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-
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e
n-
r-
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ed

r-
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.

~20! are doable analytically. Otherwise numerical quad
tures are required. The latter restricts considerably the ut
of the series representation. Another disadvantage is tha
present results are applicable to the Fokker-Planck equa
whose diffusion matrix is invertible. Its invertibility, how
ever, is not a generic case. There is a wide class of equa
with noninvertible~singular! diffusion matrices that play a
central role in many scientific areas, most notably in che
cal kinetics, theory of nucleation, and nonlinear optics,
name only a few@2#. Below we present an alternative pow
series representation free of these two drawbacks.

III. POWER SERIES EXPANSION FOR THE AVERAGE
OF DYNAMICAL VARIABLES

It is known that the time evolution of true Fokker-Planc
systems, Eq.~1! with c51 andV(x)50, can be studied in a
formally equivalent way by following either the distributio
function or the average of the dynamical variable of intere
The latter is defined by

^a~ t !&5E dx P~x,t !a~x!. ~29!

It is a simple matter to show that Eq.~29! can be cast into the
form

^a~ t !&5E dx P~x,0!A~x,t !, ~30!

where the functionA(x,t) obeys the backward Fokker
Planck equation

] tA~x,t !5L1A~x,t ![F12Di j ~x!] i j
21Gi~x!] i GA~x,t !

~31!

supplemented by the initial conditionA(x,0)5a(x). Our aim
is to develop a power series representation for^a(t)& that is
valid and easily implemented irrespective of the particu
form of the Fokker-Planck operator. A straightforward w
for achieving this is to use the ansatz

^a~ t !&5amtm, am5E dx P~x,0!Am~x!, m>0,

~32!

corresponding to the expansion

A~x,t !5Am~x!tm, m>0. ~33!

The associated recursion relation reads

mAm~x!5L1Am21~x!2 (
i51

m21

i jm2 iAi~x!, ~34!

where the summation rule form is not implied andL1 is the
backward Fokker-Planck operator defined by Eq.~31!. As
seen from the above equation, the expansion coefficient
the series~33! are readily determined recursively in terms
the Fokker-Planck coefficients and their derivatives, start
with A0(x)5a(x) (Am50 form,0). In contrast to Eqs.~9!
and ~10!, the calculations are rather trivialregardlessof the
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1500 55A. N. DROZDOV
specific dependence ofV, Gi , andDi j on x. What is also
pleasing is that the method outlined above is applica
whether the diffusion matrix is invertible or singular.

We believe this method will provide the necessary fou
dation for systematically treating a variety of physica
meaningful models, such as a Kramers equation an
colored-noise problem@2,32#, that are difficult to treat by
other means. For example, it is hoped to greatly help vis
ization of various correlation functions of the form

^a~ t !b~0!&5E dx dy a~x!P~x,tuy!b~y!, ~35!

which play an important role in the theory of stochastic p
cesses@46#. One also notes that the method can be modifi
to cover truly nonlinear Fokker-Planck equations whose
efficients exhibit a functional dependence on the distribut
functionP(x,t) @45#. These equations arise very naturally
many branches of physics and chemistry such as pla
physics, nonlinear optics, and theory of nucleation, but th
solution presents a sufficiently difficult and often impossib
task.

Before closing this section two remarks are in order. Fi
we note that the corresponding series representation for
distribution function, which is equivalent to Eq.~33! and
formally applicable to any Fokker-Planck operator, reads

P~x,t !5Bm~x!tm, m>0, ~36!

where the expansion coefficientsBm(x) are generated by

mBm~x!5LBm21~x!2 (
i51

m21

i jm2 iBi~x!, ~37!

with B0(x)5P(x,0). One must be cautious, however, on t
use of this expansion, as a finite truncation of the serie
Eq. ~37! does not possess an important property tha
shared by the true probability distribution, namely,

P~x,t !>0 ;x,t. ~38!

Of course, the inequality~38! has no sense in real-tim
quantum-mechanical calculations, Eq.~1! with c5ı, in
which caseP(x,t) is a complex function, but it generall
holds for a diffusion process (c51).

Another remark concerns an exponential power se
representation of the form

P~x,t !5exp@Cm~x!tm#, m>0, ~39!

whose coefficients are determined by

mCm5S 12 ] i j
2Di j2] iGi2VD dm,11@~] iDi j !2Gj #] jCm21

2 (
i51

m21

i jm2 iCi1
1

2
Di j

3F ] i j
2Cm211 (

k50

m21

~] iCk!~] jCm212k!G ~40!
e,

-

a
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with C0(x)5 lnP(x,0). One might think that the above ex
pansion could be successfully employed for overcoming
negative sign problem. But our calculations performed w
Eqs.~39! and~40! for model systems show that the utility o
these equations is rather restrictive with respect to the in
conditions and the Fokker-Planck coefficients. We ha
found, in particular, that an accurate description for t
whole time domain is obtainable with this technique if a
only if the width of the initial distributionP(x,0) is suffi-
ciently large, while the coefficientsV, Gi , andDi j are suf-
ficiently smooth functions ofx. Otherwise it works no bette
than the standard Taylor series expansion, being usefu
short times only.

IV. TRUNCATION SCHEMES

Generally, series representations are not closed. There
two factors that render their recursion relations open. Fi
the solution of the Fokker-Planck equation cannot, in g
eral, be expanded in terms of limited order polynomials
t ~or t). A truncation scheme must therefore be employed
eliminate this openness. A trivial procedure is to neglect
terms of higher order than somem5M . The approximate
solution thus obtained~in the following we will use the sub-
scriptM in order to distinguish it from the exact solution! is
presumably correct in the short-to intermediate time regim
But it is not necessarily valid in the limitt→`. So a fruitful
way of overcoming the openness is to employ a truncat
scheme based on the stationary solution of the problem u
study provided that is known exactly. One notes that t
concept is meaningful only for a true Fokker-Planck proce
Eq. ~1! with c51 andV(x)50, in which case it is deter-
mined by

Pst~x!5 lim
t→`

P~x,tuy!5P0~x!. ~41!

Here P0(x) is the eigenfunction of the forward Fokke
Planck operator corresponding to the lowest eigenva
l050, LP050. It is also worthwhile noticing that an ex
plicit integral expression for the stationary distribution
terms of the driftGi and diffusionDi j coefficients exists if
and only if these coefficients satisfy the so-called poten
conditions@2#.

In order to introducePst into the series~9!, we first write
the propagator in the form

P~x,tuy!5F~x,y;t !PM~x,tuy!, ~42!

whereF is a correction function defined by Eq.~42!. The
above equation is actually exact for any truncation num
M ; the only advantage of breaking up the propagator acco
ing to Eq.~42! is that we can thus use on the right-hand s
of Eq. ~42! instead of the exact correction function its a
proximation, which needs be accurate only in the long-ti
limit. In constructing such an approximation it is sufficient
satisfy the conditions

lim
t→`

F~x,y;t !5Pst~x!/PM~x,t→`uy!,

lim
t→0

F~x,y;t !511O~tK!, ~43!
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55 1501TIME MAPPING IN POWER SERIES EXPANSIONS FOR . . .
with K>M21. The latter inequality follows from the fac
that the error due to truncating the series in Eq.~9! at
m5M is of the order oftM21 ~see below!. A simple choice
for F reads

FM~x,y;t !5expH S t

t`
DM21

ln@Pst~x!/PM~x,t→`uy!#J ,
~44!

where t`5t(t→`). The global approximation so con
structed,

PM
g ~x,tuy!5FM~x,y;t !PM~x,tuy!, ~45!

is obviously exact fort50 and t5`. One can thus expec
that it would be reasonably accurate in the intermediate-t
domain as well. For completeness we also present an an
gous global approximation forA(x,t). It reads

AM
g ~x,t !5AM~x,t !1S t

t`
DM@Ast2AM~x,t→`!#, ~46!

where

Ast5E dx Pst~x!a~x!. ~47!

Clearly, the same technique can be used in order to prop
incorporate a known time-dependent long-time limit soluti
of the problem of interest, whatever the Fokker-Planck
erator is.

The other openness comes from the series represent
of the derivativedt/dt, Eq. ~7!. A straightforward way of
removing this openness is either to truncate the series~7! at
m5M21 or to use a functiont(t) such that its time deriva
tive is expanded in terms of a limited order polynomial
t. In both cases, the expansion coefficientsj i are considered
as free parameters and the problem of importance is to
termine them so that the approximate solution (PM or AM) is
correct over as large as a time interval as possible. A sim
intuitive approach to the determination of the free parame
is to fix them from the sole knowledge of some releva
values of the system under study. Usually the available
formation is the normalization condition

N[E dx u~x,t !51, ~48!

where u5uC(x,t)u2 for the Schro¨dinger equation and
u5P(x,tuy) for the true Fokker-Planck equation. With th
approximate propagatorPM , Eq. ~48! constitutes an integra
equation for the unknown parametersj i as functions of time.
Although the results in selected examples appear to be a
rate @44#, such a choice ofj i would seem to lack a soun
theoretical basis. Besides, for cases with more than one
parameter the solution of Eq.~48! is not unique. What is also
important is that this method is not generally suitable for
power series expansion for the average, Eq.~33!, as the cor-
responding series expansion for the propagator, Eq.~36!, au-
tomatically satisfies the normalization condition, no mat
what t, M , and j i are. The same is true, in one sense
another, for the other methods we have already discusse
e
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our previous articles@43–45#. Some of these methods ar
very difficult to implement and almost all of them rely on th
specific properties of the considered equation limiting
applicability of the methods to certain kind of situations.

In the reminder of this section, a general error control
method is outlined that is rather simple, but also rigorous a
allows the efficient, self-consistent treatment of the pres
series expansions without resorting to any external obse
tions. To be specific, we restrict our considerations to
function

t5
12e2mt

v1~m2v!e2mt . ~49!

The corresponding coefficientsj i are given by

j15m22v, j25v~v2m!, j i50, i.2.

One can easily check that form5v this time transformation
reduces to that already used in our earlier papers@43–45#,
Eq. ~4!, while for m50 it gives the generalized Euler tran
formation ~6!. Clearly, the best way of treating a power s
ries expansion is to study its convergence properties a
function of free parameters. Unfortunately, establishing g
eral convergence properties for the series representation
veloped in Secs. II and III is a quite difficult task. The e
pansion coefficients of these representations are determ
recursively and therefore cannot be expressed in closed fo
Since, however, the error introduced inPM(x,tuy) and
AM(x,t) due to the series truncation is a function of the fr
parametersj i , a rigorous way for their determination is t
minimize this error in one or another sense. Let the er
operator ber5] t2L. When applied to the approximat
propagatorPM , it leads in a straightforward way to the fo
lowing expression for the error:

«P5H j2~M21!WMtM

1@Di j ~] iW0!~] jWM11!2MWM11#t
M21

2
1

2
Di j (

k52

M

(
r5M122k

M

~] iWk!~] jWr !t
k1r22J PM .

~50!

A good approximation for the propagator can then be
tained by minimizing the error functional

I P~v,m!5E
0

T

dtE dx@«P~x,t !#* @«P~x,t !# ~51!

with respect tov andm. Here the asterisk denotes the com
plex conjugate, while@0,T# is the interval in which an accu
rate description is required. We note that the optimal val
of v andm so obtained turn out to be rather insensitive w
respect toT. On the other hand, as the truncation err
«P(x,t) does not necessarily tend to zero witht going to
infinity, the upper integration limit overt in Eq. ~51! has to
be chosen finite, in order to avoid divergence. We again e
phasize that the above choice ofv andm is not norm con-
served in the sense that the approximate propagatorPM so
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constructed does not satisfy the normalization condition~48!.
Of course, it is possible to minimize the error~50! with the
constrain of the unit normalization, but we have to repeat
procedure at each time moment of interest. The latter
quires a reasonable computational effort, if the number
time points is small enough, and becomes very arduous
erwise. Fortunately we have found that an accurate desc
tion in the entire time domain can be achieved even tho
the free parameters are fixed, i.e., time independent@44#. In
this case, the error introduced inPM due to the inequality
NÞ1 is easily reduced by a simple procedure of normali
tion. What is also pleasing is that the normalization of t
approximate propagatorPM by itself is not far from unity
and the differenceN21 very rapidly decreases with increa
ing M ~see Fig. 5 in Sec. V!.

Analogously, defining the error operator asr15] t2L1,
one gets

«A5r1AM~x,t !5j2MAM~x!tM112~M11!AM11~x!tM

~52!

and

I A~v,m!5E
0

T

dtE dx «A
2~x,t !P~x,0!. ~53!

Minimizing the above functional provides one with a min
mal ~in a least-squares sense! average error of̂a(t)&M in the
interval @0,T# and, consequently, a reasonable choice of
free parameters for a given truncation numberM . One must
be cautious, however, on the use of Eq.~53! with a
d-function initial condition, in which case it provides a min
mal average error in the functionA(x,t) for a given point
x5y rather than for allx’s. The free parameters so dete
mined usually fail to produce accurate results in the interm
diate to long-time domain. A simple way of overcoming th
problem is to minimize the functional~53! with the con-
straint

aM~ t→`!5ast. ~54!

In the case that the stationary solution is not known exac
we suggest to employ in Eq.~53!, instead of
P(x,0)5d(x2y), a Gaussian distribution function centere
aroundx5y.

Fortunately, the same problem does not arise when u
the global approximation~46!, whose error reads

«A
g5r1AM

g ~x,t !

5j2MAM~x!~t2t`!tM1
M

t`
S t

t`
DM21

3~11j1t1j2t
2!@Ast2AM~x,t→`!#. ~55!

It is seen to go to zero ast tends to` regardless of the
choice ofm andv. Therefore, the upper integration limit i
Eq. ~53! can be chosen infinite in this case. It is of intere
that the optimal values of the free parameters thus obta
produce, more or less, accurate results with both trunca
schemes discussed above. Finally, we note that a ti
dependent criterion for minimizing the truncation error
is
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each time momentt can also be constructed in an analogo
fashion but we will not do so here.

V. NUMERICAL RESULTS

It will now be our aim to illustrate the power of th
present formalism on a model system that is physica
meaningful and simple enough to enable a comparison w
exact results obtained by other means. We will deal with o
of the most extensively studied problems, namely, the
called problem of the decay of an unstable state@28,32,47–
58# ~see also a collection of references in Ref.@56#!. It con-
cerns a relaxation process from an initially unstable state
final stable one that occurs in a bistable system driven
external noise. Two different cases will be distinguishe
First we consider the case of Gaussian white noise with
aim to illustrate the relative efficacy of both the two
techniques presented in Secs. II and III and the two trun
tion schemes discussed in Sec. IV. As a second example
consider the relaxation of an unstable system driven by
ponentially correlated Gaussian noise. It is described b
two dimensional Fokker-Planck equation with a singular d
fusion matrix and therefore the method outlined in Sec.
can only be tested in this case.

A. White-noise problem

A typical model repeatedly studied by many autho
within this context is that governed by the one-dimensio
Fokker-Planck equation

] tP~x,t !5]x~x
32x1D]x!P~x,t !, ~56a!

P~x,0!5d~x!. ~56b!

It describes the dynamics of a Brownian particle that mo
in the symmetric bistable potentialU(x)5x4/42x2/2, start-
ing at the top of the barrier, in the large damping limit. T
corresponding Langevin equation reads

ẋ5x2x31 f ~ t !, ~57!

with f (t) being Gaussian white noise normalized to

^ f ~ t !&50, ^ f ~ t ! f ~s!&52Dd~ t2s!. ~58!

Accurate results for this model are easily obtainable
short times, e.g., by using operator decoupling techniq
@32#. Exact results are also available in the long-time lim
when the system reaches equilibrium

Pst~x!5H E
2`

`

dxexp@2U~x!/D#J 21

exp@2U~x!/D#.

~59!

Beyond the above limits, there have been a number of m
or less equivalent heuristic methods to handle Eq.~56! for
vanishingly small fluctuations, i.e., forD tending to zero
@28,32,47–56#. All these attempts, which are collectively re
ferred to as scaling theory, have been restricted to o
dimensional systems. Moreover, their utility, with a few e
ceptions, is restricted to this particular equation with th
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particular initial condition, and some of these solutions co
pletely neglect fluctuations in the final regime ast goes to
infinity.

These observations are in drastic contrast to the pre
power series expansion formalism. Apart from its general
which has already been illustrated in quantum-mechani
quantum-statistical, and stochastic calculations@43–45#, it is
both theoretically and numerically advantageous with resp
to other approximate methods available in the literature
that it is rigorous and capable of extension to higher ord
of approximation. The treatment is fairly straightforward a
systematic and allows one to properly incorporate the t
stationary solution of the considered problem. What is a
important is that our formalism is not asymptotic in the no
intensityD. In particular, forD>0.5 an accurate descriptio
in the entire time domain is already attained in the lowes
order approximations. By these we mean truncated se
representations with a minimal number of terms necessar
involve all the free parametersj i of the time transformation
used. With the functiont(t) defined by Eq.~49! they are
P2(x,tuy) andA3(x,t).

But before presenting our results we show a more sim
method to evaluate the expansion coefficients of the se
~33!. The method is applicable when the dynamical varia
can be expanded as a polynomial inx; so are the Fokker-
Planck coefficients. To be specific, let us consider
Fokker-Planck equation~56a! and let the functiona(x) be a
polynomial,

a~x!5 (
k50

N

akx
k. ~60!

Then, it is not hard to prove that the expansion coefficie
Am(x) are polynomials as well,

Am~x!5 (
k50

N12m

Ak,mx
k, ~61!

and their calculation is substantially simplified if one uses
place of Eq.~34!, the algebraic relation

FIG. 1. Distribution functionP(x,t) for the model ~56! for
D50.5 att50.25, 0.75, and 10. The solid and dashed lines are
the exact andP3(x,t) evolutions, respectively.
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mAk,m5@k2j1~m21!#Ak,m212~k22!Ak22,m21

1
D

2
~k11!~k12!Ak12,m212j2~m22!Ak,m22 .

~62!

With Eq. ~62! the expansion coefficientsAk,m are readily
determined recursively starting withAk,05ak . The above
recursive procedure is slightly different from that develop
in our earlier paper@45#, namely, having the expansion co
efficientsAk,m determined allows one to evaluate via E
~32! the time evolution of the average of a given functio
a(x) @e.g., a given moment̂xj (t)&# for any initial condition
P(x,0). By contrast, the recursive procedure of Ref.@45#
formally provides one with all moments of the Fokke
Planck equation at once, but for a given initial condition. T
generalization of Eq.~62! to arbitrary Fokker-Planck pro
cesses with polynomial coefficients is straightforwa
Analogous recursion relations are also derivable for
propagator expansion, Eq.~9!, but we do not present them
here for the text economy.

The time evolution of the approximate distributio
P3(x,t) is shown in Fig. 1 forD50.5 and compared with
that obtained by a finite-difference method@20#. Good agree-
ment between approximate and numerically exact result
achieved for all times includingt→`. With decreasingD
the agreement only slowly becomes worse. This is seen f
Fig. 2, where an analogous comparison is given
D50.05. The relative efficacy of both methods develop
here is illustrated in Fig. 3 forD50.05. This figure shows
the relative error in the second moment made by us
PM(x,t) for different truncation numbersM . Also shown are
results obtained with the power series expansion for this m
ment ^x2(t)&M . As evidenced by Fig. 3, both approach
work equally well and provide a reasonable accuracy eve
the lowest-order approximations. The corresponding~i.e., of
the same order int) global approximationsPM

g (x,t), deter-
mined by Eqs.~44! and ~45!, are not shown in the abov
figures, as these approximations are found to be almos
distinguishable from the numerically exact results; so are
global approximations for the second moment determin
through Eq.~46!. In order to demonstrate the relative effi
cacy of the ordinary truncation scheme and that based on
true stationary solution, we present in Fig. 4 the relative er
in the second moment made by usinĝx2(t)&M and

r

FIG. 2. Same as in Fig. 1, but forD50.05 and for
t50.5, 1.5, and 10.
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^x2(t)&M
g for different truncation numbersM and for

D50.05 and 0.01. For the sake of comparison these ca
lations have been carried out with one and the same t
transformation given bym5v51. It is seen that successiv
higher orders reduce the error over a larger range oft and yet
the results obtained with the global approximation^x2(t)&M

g

@Eq. ~46!# are much more accurate than those of the co
sponding ordinary truncation scheme^x2(t)&M . It is also
worthwhile noticing the sensitivity of the convergence rate
the choice of the free parameters. As evidenced by Fig

FIG. 3. Relative error,@~approximate!2~exact!#/~exact!, in the
second moment̂x2(t)& for the model~56! for D50.05. Dashed
lines, results obtained with the power series expansion for the
ment^x2(t)&M for M53, 4, and 5; solid lines, results of the seri
expansion for the propagatorPM(x,t) for M52, 3, and 4.

FIG. 4. Relative error in the second moment^x2(t)&. The
dashed and solid lines show, respectively, the error of the ordin
truncation schemêx2(t)&M and that of the global approximatio
^x2(t)&M

g obtained with different truncation numbersM . ~a!
D50.05 and~b! D50.01.
u-
e

-

3,

should the free parameters be determined by Eqs.~53! and
~54!, the power series representation^x2(t)&M converges suf-
ficiently rapidly and a very accurate description is alrea
attained forM55. By contrast, with the time transformatio
given by m5v51, an analogous level of accuracy
^x2(t)&M is achieved only forM.20 @see Fig. 4~a!#.

Finally, we recall that the present choice of free para
eters is not norm conserved. The same is true for the var
different numerical schemes available in the literature
solving Fokker-Planck and Schro¨dinger equations, most o
which do not preserve the norm of the solution~see, e.g.,
@3,9,10,14,17#!. It is well known, however, that a dramati
reduction of normalization error is already attained just
replacingPM(x,t) by PM(x,t)/N(t), whereN(t) reads

N~ t !5E
2`

`

dx PM ~x,t !. ~63!

The accuracy achieved with this simple procedure seems
couraging~see Figs. 1, 2, and 3!. Thus the interesting issue
remains to discuss is the following: How large is the error
N as a function of the truncation orderM? This issue is
addressed in Fig. 5, which shows the relative error in
normalization of the approximate propagatorPM(x,t), ob-
tained for different truncation numbersM , as a function of
time. The calculations are performed forD50.5 and 0.05
with m5v52 andm5v50.45, respectively. This error is

o-

ry

FIG. 5. Relative error in the normalization@Eq. ~63!# for the
model ~56!. The dashed, dot-dashed, and solid lines are, res
tively, for the results obtained usingPM(x,t) with M52, 3, and 4.
~a! D50.5 and~b! D50.05.
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seen to increase withD going to zero, but each successi
higher order reduces it considerably.

B. Colored-noise problem

As a second and more challenging example, we cons
the relaxation of an unstable system driven by a noise wi
finite correlation time. To be specific we restrict the discu
sion to a system governed by the Langevin equation

ẋ5x2x31v~ t !, ~64!

where the driving noise termv(t) is modeled as the station
ary Ornstein-Uhlenbeck process

v̇5g@2v1 f ~ t !#, ~65!

with g21 being the correlation time of the noise. The whit
noise termf (t) appearing in the above equation is defined
Eq. ~58!. As f (t) is Gaussian and has a zero mean, the no
v(t) is also Gaussian with statistical properties

^v~ t !&50, ^v~ t !v~s!&5Dgexp~2gut2su!. ~66!

When g goes to infinity~short correlation times!, one can
completely neglect the termv̇ in Eq. ~65!, thus reducing the
problem to that already studied in Sec. V A. For finiteg ’s
the Fokker-Planck equation describing the pair stocha
process (x,v) reads

] tP~x,v,t !5@]x~x
32x2v !1g]v~v1Dg]v!#P~x,v,t !.

~67!

Since the noise is assumed to be stationary, its probab
distribution is given by

Pv~v !5~2pgD !21/2expS 2v2

2gD D . ~68!

Assuming further thatx andv are statistically independent a
t50, one can write their joint distribution as

P~x,v,0!5d~x!Pv~v !. ~69!

We note that the above problem has already been stu
in Refs. @57,58#, and two approximate solutions have be
obtained. Both solutions are asymptotically valid in the lim
of vanishingly smallD, being a straightforward extension o
the scaling theory to systems driven by an Ornste
Uhlenbeck noise. We also note that the diffusion matrix
Eq. ~67! does not possess an inverse, while the equation
self does not obey detailed balance. The former means
the power series representation of the propagator, Eq.~9!, is
not applicable in this case, while the latter property preve
us from making use of the truncation scheme based on
true stationary solution, as this solution is not known exac

Our aim is to illustrate the utility of the method outline
in Sec. III in treating situations of such a kind. The mome
of Eq. ~67!, ^xk(t)v r(t)&, can be calculated in terms of Eq
~33! and ~34!. Since, however, the functiona(x,v)5xkv r

and the Fokker-Planck coefficients are polynomials in
considered case, the expansion coefficientsAm(x,v) are also
polynomials,
er
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Am~x,v !5 (
i50

k12m

(
j50

r1m

Ai , j ,mx
iv j , ~70!

and their calculation is substantially simplified if one use
instead of Eq.~34!, the algebraic relation

mAi , j ,m5@ i2g j2j1~m21!#Ai , j ,m211~ i11!Ai11,j21,m21

2~ i22!Ai22,j ,m211Dg2~ j11!~ j12!Ai , j12,m21

2j2~m22!Ai , j ,m22 . ~71!

In particular, with Eq.~69! the moments of the stochast
process are obtained by a series

^x2k11~ t !&50,

^x2k~ t !&5 (
m50

(
j50

m/2

~2 j21!!!A0,2j ,m~gD ! jtm. ~72!

Numerically exact results for these moments were
tained by a path-integral method described earlier@32# for
the choice of parametersD50.01 andg55 and 0.5. Figure
6 shows the relative error made by using^x2(t)&M for dif-
ferent truncation numbersM . Also shown is the error ob-
tained with the global approximation̂x2(t)&M

g . The latter is
constructed in terms of the numerically exact results. For
sake of comparison, the calculation is again performed w
m5v51. As expected, forg55 the rate of convergence o
the present method is almost the same as in the white-n

FIG. 6. Same as in Fig. 4, but for a colored-noise problem@Eqs.
~67! and ~69!# for D50.01. ~a! g55 and~b! g50.5.
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1506 55A. N. DROZDOV
limit g5` @cf. Figs. 4~b! and 6~a!#. In both cases, an ad
equate level of accuracy in the entire time domain
achieved forM;30. With decreasingg the convergence
slowly becomes worse@cf. Figs. 6~a! and 6~b!#. The reason is
that the expansion coefficients also become smaller in
case, and a larger number of terms has to be included in
series~72! to obtain convergent results in the long-time lim

One can thus conclude that the present power series
pansion formalism offers a powerful tool for systematica
treating nonequilibrium statistical mechanics. It is a meth
that can be applied to simple or complex systems and h
dimensionality does not seem to present special proble
We also note the relative ease with which this method can
implemented. Almost all calculations are doable analytica
in a simple, economical way, thus allowing one to get ac
rate results with minimal computational efforts. From th
point of view the present method is both theoretically a
numerically advantageous with respect to the various
proximate algorithms available for numerically integrati
the Fokker-Planck equation~1!.

VI. CONCLUSION

In this work, the power series expansion formalism
developed for general Fokker-Planck-Schro¨dinger processes
The idea introduced here is directly applied to derivi
power series representations for the propagator and for
average of dynamical variables. Recursion relations are
tained for the expansion coefficients that can beanalytically
evaluated for any number of degrees of freedom. The re
sive evaluation of the expansion coefficients can be car
out systematically until a given level of accuracy is reach
The treatment is fairly straightforward and allows one
properly incorporate the true long-time limit solution of th
problem under study whenever that is known exactly. In
event that there is no closed-form solution of the station
problem, an approximate stationary~ground-state! solution
can be obtained recursively from the expansion for
propagator, Eq.~9!, taken aty5x in the limit t5`. The
corresponding free parameters are determined variation
e.g., by minimizing the error functional
h
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I P~v,m!5E dx@LP~x,`ux!#2. ~73!

This is of interest considering the lack of a satisfactory a
lytical description for the stationary properties of a diffusio
process without detailed balance@2#. Analogous results are
also derivable by application of the power series expans
method outlined in Sec. III. Two general approaches are p
sible in such a case: One can use a cumulant genera
function formalism@14# or develop a variational scheme fo
reconstructing a distribution function in terms of known a
erages@59#. These approaches are planned to be discusse
greater length in a future paper.

Another problem of importance refers to the classical r
theory. The thermally activated escape over a barrier re
sents a decisive step in the dynamics of various processe
physics, chemistry, and biology, and a great deal of eff
has been devoted in recent times in order to determine
transition rate over the barrier@60#. General expressions fo
this rate are derived by linearizing the original Fokke
Planck operator in the vicinity of the barrier top@61#; how-
ever, they are valid if and only if the potential barrierDU is
sufficiently large when compared to the energy of therm
motion b21, so that there are no other quantities that a
comparable or smaller than (bDU)21. If this is not the case,
the rate expressions may fail grossly@7#. One also notes tha
a perturbation procedure that has recently been develope
obtaining finite barrier corrections of the rate@62# is too
complicated to be useful beyond second order
(bDU)21. By contrast, the power series formalism dev
oped here offers a convenient tool for systematically treat
the escape problem both analytically and numerically. As
from the two aforementioned examples that are currently
vestigated by the present author, this formalism can be
plied to many other fields involving Fokker-Planck, Bloc
and Schro¨dinger equations.
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